Idris2Doc : Distribution

Distribution

Probability distributions.

Definitions

interfaceDistribution : ((0_ : Shape) -> (0_ : Nat) ->Type) ->Type
  A joint, or multivariate distribution over a tensor of floating point values, where the first
two central moments (mean and covariance) are known. Every sub-event is assumed to have the
same shape.

@dist Constructs the distribution from the shape of each sub-event and the number of events in
the distribution.

Parameters: dist
Methods:
mean : disteventdim->Tag (Tensor (dim::event) F64)
  The mean of the distribution.
cov : disteventdim->Tag (Tensor (dim:: (dim::event)) F64)
  The covariance, or correlation, between sub-events.

Implementation: 
DistributionGaussian
mean : Distributiondist=>disteventdim->Tag (Tensor (dim::event) F64)
  The mean of the distribution.

Totality: total
Visibility: public export
cov : Distributiondist=>disteventdim->Tag (Tensor (dim:: (dim::event)) F64)
  The covariance, or correlation, between sub-events.

Totality: total
Visibility: public export
variance : Distributiondist=>distevent1->Tag (Tensor (1::event) F64)
  The variance of a single random variable.

Totality: total
Visibility: export
interfaceClosedFormDistribution : Shape-> ((0_ : Shape) -> (0_ : Nat) ->Type) ->Type
  A joint, or multivariate distribution over a tensor of floating point values, where the density
function and corresponding cumulative density function are known (either analytically or via
approximation). Every sub-event is assumed to have the same shape.

@event The shape of each sub-event.
@dist Constructs the distribution from the shape of each sub-event and the number of events in
the distribution.

Parameters: event, dist
Constraints: Distribution dist
Methods:
pdf : distevent (Sd) ->Tensor (Sd::event) F64->Tag (Tensor [] F64)
  The probability density function of the distribution at the specified point.
cdf : distevent (Sd) ->Tensor (Sd::event) F64->Tag (Tensor [] F64)
  The cumulative distribution function of the distribution at the specified point (that is,
the probability the random variable takes a value less than or equal to the given point).

Implementation: 
ClosedFormDistribution [1] Gaussian
pdf : ClosedFormDistributioneventdist=>distevent (Sd) ->Tensor (Sd::event) F64->Tag (Tensor [] F64)
  The probability density function of the distribution at the specified point.

Totality: total
Visibility: public export
cdf : ClosedFormDistributioneventdist=>distevent (Sd) ->Tensor (Sd::event) F64->Tag (Tensor [] F64)
  The cumulative distribution function of the distribution at the specified point (that is,
the probability the random variable takes a value less than or equal to the given point).

Totality: total
Visibility: public export
dataGaussian : (0_ : Shape) -> (0_ : Nat) ->Type
  A joint Gaussian distribution.

@event The shape of each sub-event.
@dim The number of sub-events.

Totality: total
Visibility: public export
Constructor: 
MkGaussian : Tensor (Sd::event) F64->Tensor (Sd:: (Sd::event)) F64->Gaussianevent (Sd)
  @mean The mean of the events.
@cov The covariance between events.

Hints:
ClosedFormDistribution [1] Gaussian
DistributionGaussian
Taggable (Gaussianeventdim)